

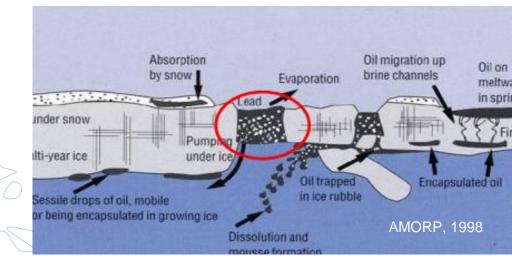
KYSTVERKET NORWEGIAN COASTAL ADMINISTRATION

Tests with In-Situ Burning (ISB) in Norway

Hilde Dolva, Norwegian Coastal Administration

Outline:

- Studies performed; in laboratories, small –scale and field tests
 - ignition
 - smoke emissions
 - soot, black carbon (BC)
 - residues
 - burning efficiency (BE)
 - Fire booms
- Field test Oil on Water exercise, 2018 (results) and 2019 (plan)
- Two incidents in Norway
 - KNM Helge Ingstad
 - Northguider



Main stratety for NCA is still mechanical recovery

ISB:

- Not in the toolbox today increase knowlegde of ISB
- Ice infected areas Arctic areas
- Oil removed from surface waste management
- Ignition
- Emission gasses soot
- Residue

Oils tested:

- MGO Marine gas oil 0,05% S
- GO Gas oil 0,001% S
- WRG Wide Range Gas oil
- IFO 180 (Heavy fuel oil)
- ULSFO and HDME 50, S < 0,1 %. Hybrid oils, can be used in S-restricted areas Oils that can be used in machinery designed to burn HFO
- Crude oils

SINTEF has performed the tests

→ Greater variation of marine fuel, MGO is used to a greater extent

Small scale projects to ignite oil

- Can the oils be ignited?

Burn cell

Ca 110 ml oil

Container, 60 x 60 cm

Ca 4,5 I oil

Results from burn cell- ignition (small scale tests)

	Flash point	Oil applied (g)	Oil after burning (g)	lgnitibility					
 Name				A	в	с	D	Burning time (min.)	Burning efficiency (BE%)
MGO Fresh	62,5	106	32	-	x			18	70
MGO 250°C+	110	113	20	-	-	-	x	8	82
GO Fresh	71,5	102	16	-	-	-	x	10	84
GO 250°C+	107,5	103	25	-	-	-	x	6	75
WRG Fresh	115,5	105	105	-	-	-	-	-	0
ULSFO Fresh	75	117	56	x				16	48
ULSFO Fresh, 10 % water	-	101	-	-		-	x	19	-
ULSFO 250°C+	112	110	55	-	-	-	x	11	50
Rotterdam Diesel Fresh	82,5	119	-	-	-	-	x	-	

Green - oil lit during 3 ignition experiments Yellow - oil lit with extended ignition time Red - no ignition

Burning in container, 60 x 60 cm

- Used gasoline gel bags (500 ml)
 - Ignition time varied and can be long MGO and ULSFO were the easiest to ignite
- Ignition source and method are important!

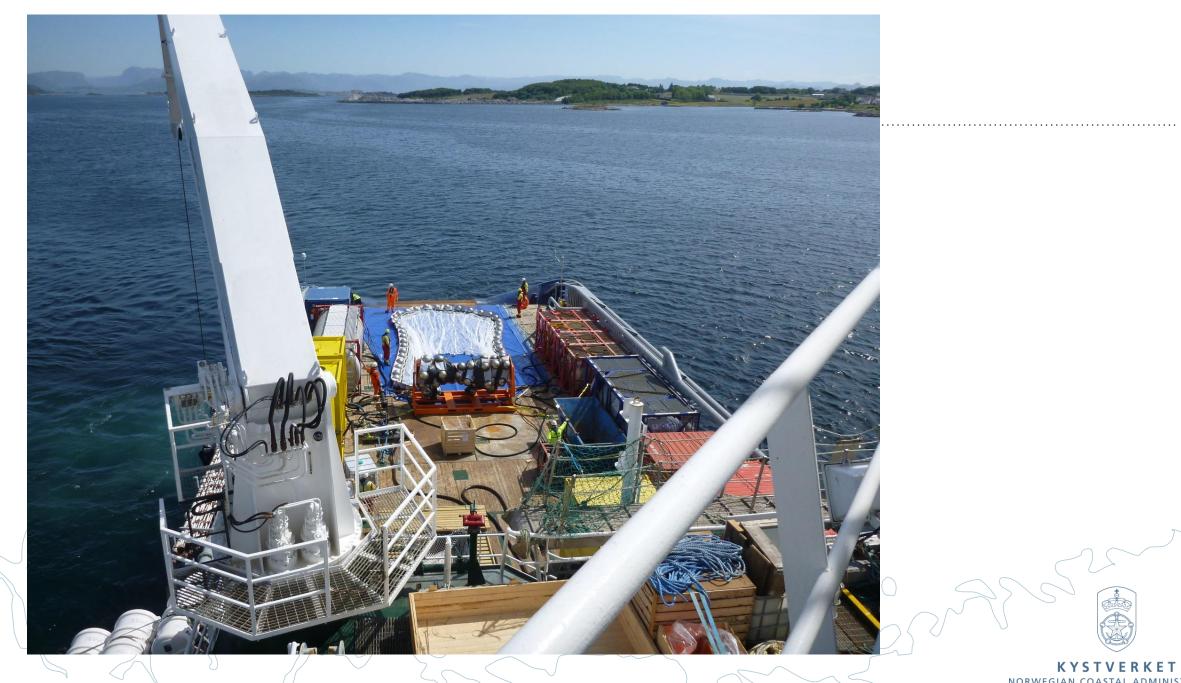
ISB – window of opportunity

	Predicted ignitability										
Oil	13	°C	0 °C								
	2 m/s	5 m/s	2 m/s	5 m/s							
MGO	> 5 days	> 5 days	> 5 days	> 5 days							
GO	> 5 days	> 5 days	> 5 days	> 5 days							
WRG	< 12 hours	< 3 hours	< 2 hours	< 0.5 hours							
Rotterdam Diesel	> 5 days	> 5 days	> 5 days	> 5 days							
HDME 50	< 2 hours	< 0.5 hour	> 5 days	< 2 days							
ULSFO	< 1 day	< 6 hours	< 2 days	< 9 hours							

- 5 mm oil thickness
- Time window for how long the oil can be ignited is calculated with the SINTEF Oil Weathering Model (uses: water content, viscosity, wax, asphaltenes, flash point)
- The calculation involves <u>uncertainty</u>, but gives an indication
- The window of opportunity depends on the characteristics of the oil and the weather situation

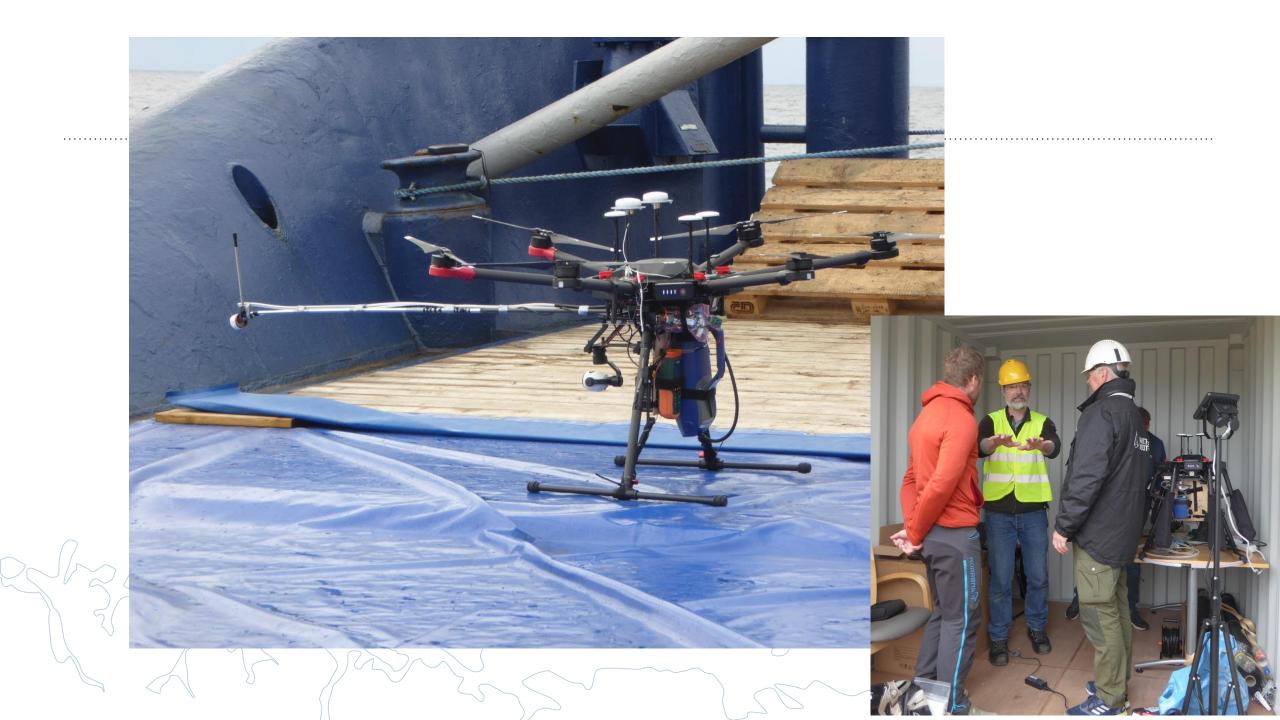
Smoke emissions

- ISB performed in the RISE lab in Trondheim
- Smoke emissions and residue investigated
- The burning efficiency was 90%, due to splashing it might be overestimated
- Densities of residue < 1



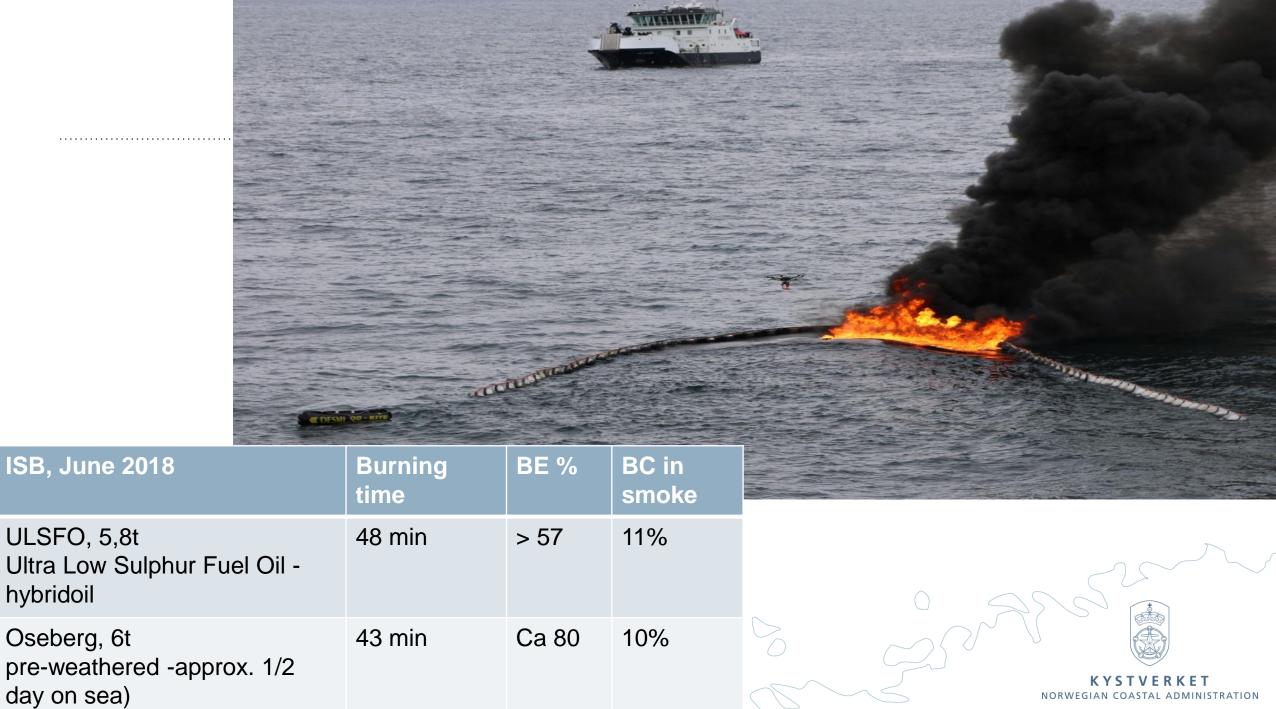
Oil on Water exercise - OPV 2018

- NOFO (Norwegian Clean Sea Association for Operating Companies) and NCA (Norwegian Coastal Administration) are the organizers of the ISBs
- Performed in the North Sea
- NOFO and NCA plan to use ISB as a response method.
- Application to the Environmental Agency for release of oils, weather restrictions, wind < 8m/s
- Verification of the results from the small scale testing
- Operational experience
- Two ISBs performed



20000

Two ISB tests, oil pumped into the boom: - 5,8 m³ of ULSFO - 6 m³ of Oseberg crude


Monitoring program

Drone 1 and MOB-B: Near zone to the burn (< 400m) Drone 2: From approx. 400 to 800m from the burn MOB-S: Up to approx. 3 km from the burn

		Drone	MOB-	MOB-	60
Parameter	Drone 1	2	S	В	59,998
Particulate matter (PM)					59,996
PM 1, 2.5, 4, 10 and total	Х		Х	Х	59,994
PM 2.5		Х			59,992 S4 -Vessel
Soot on filter (to PAH)	Х	Х			59,99 — MOBs
Gases					Transect 1 S5 — MOBb
NO _x	Х				59,988 • Pad Samples
SO ₂	Х				59,986 Transect 2 Drone1
CO	Х				59,984 Transect 3 S6
CO ₂	Х				59,982 S6
Soot downfall on sea					
surface			Х		59,98 Transect 4
ISB residue			Х		59,978
Human exposure					2,39 2,4 2,41 2,42 2,43 2,44 2,45
TVOC/BTEX				Х	KYSTVERKET
Filter (PAH)				Х	NORWEGIAN COASTAL ADMINISTRATI

Oseberg: GPS locations during burn

NORWEGIAN COASTAL ADMINISTRATION

Results, from Oil on Water 2018 and testing in laboratory

Oil on Water – 2018, ULSFO & Oseberg oils

Smoke emissions

- $NO_x(1,2 \text{ ppm})$ and $SO_2(2.1 \text{ ppm})$ were low
- CO₂ concentration 200 -500 ppm above background level

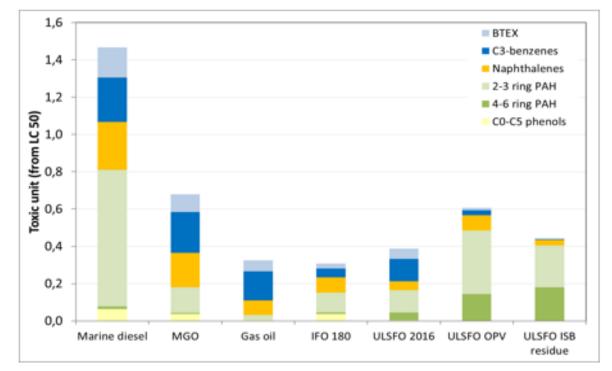
Soot/BC

- 90% of the particles were smaller than 2,5 µm (PM 2,5)
- BC was 97g/kg for Oseberg, 107 g/kg for ULSFO (from OPV 2018)

Laboratory and small-scale tests:

Oil on Water exercise verified former results

IFO 180 more release of BC (app. 250g/kg) and emission gasses.


Black Carbon (BC) is the lightabsorbing parts of the fine particles (PM 2,5) Organ Carbon (OC) is the lightreflecting parts of 2,5 PM BC + OC = soot

Residue

-Water accommodated fraction (WAF) of unburned oil and residue of oil was tested (SINTEF)

- Toxit Unit (TU) below 1. Tested on Calanus finmarchias CV & nauplii (zooplankton)
- If residue contains a mixture of unburned oil \rightarrow more toxic
- Develop methodology for chemical analyses of the burn residue (50, 70 and 90 %) to decide Burn efficiency (BE) (SINTEF and SL Ross)
- Sinking of IFO 180 residue?
- MGO residue is very thin

TU > 1 indicats a mortality of 50% for the tested organisms.

Field experiments

2018

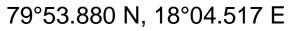
- Two successful burns were performed
- Both slicks were ignited by the Pyrodrone
- The Pyroboom was less robust than expected
- A large amount of monitoring data collected....

2019

• Five ISBs are planned in June

Reports are public and available: https://www.kystverket.no/Beredskap/forskning-og-utvikling/in-situbrenning-isb/

KNM Helge Ingstad, grounding in November 2018


Oil budget	Amount of
Oil onboard	Total 500 m ³ oil, of which 460 m ³ marin diesel
Oil pumped from vessel	143 m ³ marin diesel
Oil in vessel when taken to land	App. 5 m3
Total leakage to sea	App. 352 m ³
Recovered oil (booms etc)	68 m ³
Discharges to the sea, evaporated + dissolved	284 m3

- Monitoring
- Mechanical oil recovery
- Environmental impact program

Northguider, fishing vessel, grounded in Svalbard- December 2018

- The vessel had 330 m3 marine diesel on board
- Vessels were emptied from 9-13.1 2019, IBC containers used
- F If all MGO had leaked into 90% ice diesel would had a very long life time
- Large amounts of seabirds in the spring, as well as seals, polar bears and whales
- Had diesel been conserved in ice it would have become a serious and demanding environmental incident

Research and knowledge are needed to build up capacities that are suitable and flexible to handle oil

Different tools are needed

spills